A New Mean Reversion Model By Fourier Terms: Applications In Finance

Stok Kodu:
9786052228104
Boyut:
14x21
Sayfa Sayısı:
86
Baskı:
1
Basım Tarihi:
2018
Kapak Türü:
Ciltsiz
Kağıt Türü:
2. Hamur
%15 indirimli
130,00TL
110,50TL
Taksitli fiyat: 12 x 11,75TL
Havale/EFT ile: 108,29TL
Temin süresi 6 gündür.
9786052228104
571356
A New Mean Reversion Model By Fourier Terms: Applications In Finance
A New Mean Reversion Model By Fourier Terms: Applications In Finance
110.50

Financial time series including high frequency structures like jumps, spikes and stochastic volatility are usually modeled in an ad-hoc manner by stochastic differential equations together with Levy processes. Estimating the parameters and determining the jump size distributions do not have a precise and universally accepted method. Under these circumstances, complexities and confusions usually arise. This book, approaches to this issue from a very different angle through introducing an autocorrelation one process together with finite number of Fourier series terms. Introduction of Fourier series to estimate the dynamics of the process is not done in an ad-hoc manner or as done before in dealing with seasonality. Here the moving average is transformed to a “moving and fluctuating” average by the help of Fourier series. Instead of adding jump structures to the model which makes the parameter estimation quite cumbersome, our model in discrete time can easily be transformed to a well-known mean reverting continuous time process. Moreover, our alternative model turned out to be a quite powerful and accurate forecasting technique.

Yorum yaz
Bu kitabı henüz kimse eleştirmemiş.
Axess Kartlar
Taksit Sayısı Taksit tutarı Genel Toplam
Tek Çekim 110,50    110,50   
3 40,25    120,75   
6 21,25    127,51   
9 14,92    134,27   
12 11,75    141,01   
QNB Finansbank Kartları
Taksit Sayısı Taksit tutarı Genel Toplam
Tek Çekim 110,50    110,50   
3 40,25    120,75   
6 21,25    127,51   
9 14,92    134,27   
12 11,75    141,01   
Bonus Kartlar
Taksit Sayısı Taksit tutarı Genel Toplam
Tek Çekim 110,50    110,50   
3 40,25    120,75   
6 21,25    127,51   
9 14,92    134,27   
12 11,75    141,01   
Paraf Kartlar
Taksit Sayısı Taksit tutarı Genel Toplam
Tek Çekim 110,50    110,50   
3 40,25    120,75   
6 21,25    127,51   
9 14,92    134,27   
12 11,75    141,01   
Maximum Kartlar
Taksit Sayısı Taksit tutarı Genel Toplam
Tek Çekim 110,50    110,50   
3 40,25    120,75   
6 21,25    127,51   
9 14,92    134,27   
12 11,75    141,01   
World Kartlar
Taksit Sayısı Taksit tutarı Genel Toplam
Tek Çekim 110,50    110,50   
3 40,25    120,75   
6 21,25    127,51   
9 14,92    134,27   
12 11,75    141,01   
Diğer Kartlar
Taksit Sayısı Taksit tutarı Genel Toplam
Tek Çekim 110,50    110,50   
3 -    -   
6 -    -   
9 -    -   
12 -    -   

Financial time series including high frequency structures like jumps, spikes and stochastic volatility are usually modeled in an ad-hoc manner by stochastic differential equations together with Levy processes. Estimating the parameters and determining the jump size distributions do not have a precise and universally accepted method. Under these circumstances, complexities and confusions usually arise. This book, approaches to this issue from a very different angle through introducing an autocorrelation one process together with finite number of Fourier series terms. Introduction of Fourier series to estimate the dynamics of the process is not done in an ad-hoc manner or as done before in dealing with seasonality. Here the moving average is transformed to a “moving and fluctuating” average by the help of Fourier series. Instead of adding jump structures to the model which makes the parameter estimation quite cumbersome, our model in discrete time can easily be transformed to a well-known mean reverting continuous time process. Moreover, our alternative model turned out to be a quite powerful and accurate forecasting technique.

Kapat