Fostering Mathematical Giftedness & Creativity Through

Stok Kodu:
9786253751951
Boyut:
16x24
Sayfa Sayısı:
343
Baskı:
1
Basım Tarihi:
2024-12
Kapak Türü:
Ciltsiz
Kağıt Türü:
1. Hamur
%10 indirimli
350,00TL
315,00TL
Havale/EFT ile: 308,70TL
9786253751951
985444
Fostering Mathematical Giftedness & Creativity Through
Fostering Mathematical Giftedness & Creativity Through
315.00

CHAPTER 1
INTRODUCTION
1.1. Problem Statement                                        
1.2. Purpose of the Study
1.3. Research Problems and Sub-Problems
1.4. Importance of Research
1.6. Limitations and Restrictions
1.6. Definitions

CHAPTER 2
THE THEORETICAL BASIS OF THE RESEARCH
2.1. The Concept of Giftedness From Past To Present
2.2. What is Giftedness in Mathematics?
2.3. Development of Mathematical Ability
2.4. Mathematical Creativity
2.5. Sub Dimensions of Mathematical Creativity
2.6. Mathematical Modeling Activities and the Emergence ofMathematical Creativity
2.7. Related Research
2.7.1. Mathematical Giftedness and Mathematical Creativity Research
2.7.2. Studies Investigating Mathematical Creativity Based onMathematical Modeling Activities

CHAPTER 3
METHOD
3.1. Research Design
3.1.1. Education in Science and Art Centers
3.1.2. Physical Structure of the Science and Art Center and School Culture
3.1.3. Mathematics Courses in Science and Art Centers
3.2. Selection of Participants and Focus Groups
3.2.1. Participants 
3.2.2. First Focus Group Participants 
3.2.3. Second Focus Group Participants 
3.3. Data Collection Process 
3.3.1. Pre-Application 
3.3.2. Pre-Practice Observations 
3.3.3. Data Collection 
3.4. Data Collection Tools 
3.5. Data Analysis, Analysis and Coding 
3.5.1. Analyses for the First and Second Research Problems 
3.5.2. Analyses, Analyzes and Coding for the Third Research Problem 
3.6. Validity and Reliability 
3.7. Ethics
3.8. Role of the Researcher 

CHAPTER 4 
FINDINGS AND COMMENTS 
4.1. Mathematical Creativity of the First Focus Group 
4.1.1. Students’ Creativity in the Process 
4.1.1.1. Fluency and Flexibility 
4.1.1.2. Progressivity 
4.1.1.3. Mathematical Connections 
4.1.2. Evaluation of Products in terms of Creativity 
4.1.2.1. Quality and Generalizability 
4.1.2.2. Originality 
4.1.3. Students’ Common Creative Thinking Skills 
4.1.4. Sample Case Analysis: The Quilt Problem 
4.1.4.1. Solving the Quilt Problem and Progressivity 
4.1.4.2. Analysis of the Solution Process in terms of Creativity: The Quilt Problem 
4.1.4.2.1. Fluency 
4.1.4.2.2. Flexibility 
4.1.4.2.3. Attribution 
4.1.4.2.4. Quality and Originality 
4.2. Mathematical Creativity of the Second Focus Group 
4.2.1. Students’ Creativity in the Process 
4.2.1.1. Fluency and Flexibility 
4.2.1.2. Progressivity
4.2.1.3. Mathematical Connections 
4.2.2. Evaluation of Models in terms of Creativity 
4.2.2.1. Quality and Generalizability 
4.2.2.2. Originality
4.2.3. Students’ Common Creative Thinking Skills 
4.2.4. Sample Situation Analysis: Bigfoot 
4.2.4.1. Solving the Bigfoot Problem and Progressivity 
4.2.4.2. Creativity Analysis of the Resolution Process: Big Foot 
4.2.4.2.1. Fluency 
4.2.4.2.2. Flexibility 
4.2.4.2.3.Attribution 
4.2.4.2.4. Quality and Originality 
4.3. Individual Creativity of Gifted Students 
4.3.1. Students’ Individual Mathematical Creativity in the Process 
4.3.1.1. Ideas for the Allowance Problem 
4.3.1.2. Students’ Fluent Thinking Skills 
4.3.1.3. Students’ Flexible Thinking Skills 
4.3.1.4. Students’ Associative Skills 
4.3.1.5. Quality of Student Products 
4.3.1.6. Originality of Student Products 
4.3.2. Students’ Individual Creativity 
4.4. Characteristics of Modeling Activities that Enable the Emergence of Mathematical Creativity 
4.4.1. Comparison of Creativity of Two Focus Groups of Students 
4.4.2. Characteristics of Modeling Activities 
4.4.2.1. Library Problem 
4.4.2.2. The Boss’s Problem 
4.4.2.3. Parking Problem 
4.4.2.4. Quilt Problem 
4.4.2.5. Bigfoot Problem 

CHAPTER 5
CONCLUSION AND RECOMMENDATIONS 
5.1. Results on Group and Individual Creativity 
5.2. Results on the Characteristics of Mathematical Modeling Activities 
5.3. Recommendations 
5.3.1. Recommendations for Practitioners 
5.3.2. Recommendations for Researchers 

 

Yorum yaz
Bu kitabı henüz kimse eleştirmemiş.
Axess Kartlar
Taksit Sayısı Taksit tutarı Genel Toplam
Tek Çekim 315,00    315,00   
3 114,74    344,23   
6 60,58    363,48   
9 42,53    382,76   
12 33,50    401,97   
QNB Finansbank Kartları
Taksit Sayısı Taksit tutarı Genel Toplam
Tek Çekim 315,00    315,00   
3 114,74    344,23   
6 60,58    363,48   
9 42,53    382,76   
12 33,50    401,97   
Bonus Kartlar
Taksit Sayısı Taksit tutarı Genel Toplam
Tek Çekim 315,00    315,00   
3 114,74    344,23   
6 60,58    363,48   
9 42,53    382,76   
12 33,50    401,97   
Paraf Kartlar
Taksit Sayısı Taksit tutarı Genel Toplam
Tek Çekim 315,00    315,00   
3 114,74    344,23   
6 60,58    363,48   
9 42,53    382,76   
12 33,50    401,97   
Maximum Kartlar
Taksit Sayısı Taksit tutarı Genel Toplam
Tek Çekim 315,00    315,00   
3 114,74    344,23   
6 60,58    363,48   
9 42,53    382,76   
12 33,50    401,97   
World Kartlar
Taksit Sayısı Taksit tutarı Genel Toplam
Tek Çekim 315,00    315,00   
3 114,74    344,23   
6 60,58    363,48   
9 42,53    382,76   
12 33,50    401,97   
Diğer Kartlar
Taksit Sayısı Taksit tutarı Genel Toplam
Tek Çekim 315,00    315,00   
3 -    -   
6 -    -   
9 -    -   
12 -    -   

CHAPTER 1
INTRODUCTION
1.1. Problem Statement                                        
1.2. Purpose of the Study
1.3. Research Problems and Sub-Problems
1.4. Importance of Research
1.6. Limitations and Restrictions
1.6. Definitions

CHAPTER 2
THE THEORETICAL BASIS OF THE RESEARCH
2.1. The Concept of Giftedness From Past To Present
2.2. What is Giftedness in Mathematics?
2.3. Development of Mathematical Ability
2.4. Mathematical Creativity
2.5. Sub Dimensions of Mathematical Creativity
2.6. Mathematical Modeling Activities and the Emergence ofMathematical Creativity
2.7. Related Research
2.7.1. Mathematical Giftedness and Mathematical Creativity Research
2.7.2. Studies Investigating Mathematical Creativity Based onMathematical Modeling Activities

CHAPTER 3
METHOD
3.1. Research Design
3.1.1. Education in Science and Art Centers
3.1.2. Physical Structure of the Science and Art Center and School Culture
3.1.3. Mathematics Courses in Science and Art Centers
3.2. Selection of Participants and Focus Groups
3.2.1. Participants 
3.2.2. First Focus Group Participants 
3.2.3. Second Focus Group Participants 
3.3. Data Collection Process 
3.3.1. Pre-Application 
3.3.2. Pre-Practice Observations 
3.3.3. Data Collection 
3.4. Data Collection Tools 
3.5. Data Analysis, Analysis and Coding 
3.5.1. Analyses for the First and Second Research Problems 
3.5.2. Analyses, Analyzes and Coding for the Third Research Problem 
3.6. Validity and Reliability 
3.7. Ethics
3.8. Role of the Researcher 

CHAPTER 4 
FINDINGS AND COMMENTS 
4.1. Mathematical Creativity of the First Focus Group 
4.1.1. Students’ Creativity in the Process 
4.1.1.1. Fluency and Flexibility 
4.1.1.2. Progressivity 
4.1.1.3. Mathematical Connections 
4.1.2. Evaluation of Products in terms of Creativity 
4.1.2.1. Quality and Generalizability 
4.1.2.2. Originality 
4.1.3. Students’ Common Creative Thinking Skills 
4.1.4. Sample Case Analysis: The Quilt Problem 
4.1.4.1. Solving the Quilt Problem and Progressivity 
4.1.4.2. Analysis of the Solution Process in terms of Creativity: The Quilt Problem 
4.1.4.2.1. Fluency 
4.1.4.2.2. Flexibility 
4.1.4.2.3. Attribution 
4.1.4.2.4. Quality and Originality 
4.2. Mathematical Creativity of the Second Focus Group 
4.2.1. Students’ Creativity in the Process 
4.2.1.1. Fluency and Flexibility 
4.2.1.2. Progressivity
4.2.1.3. Mathematical Connections 
4.2.2. Evaluation of Models in terms of Creativity 
4.2.2.1. Quality and Generalizability 
4.2.2.2. Originality
4.2.3. Students’ Common Creative Thinking Skills 
4.2.4. Sample Situation Analysis: Bigfoot 
4.2.4.1. Solving the Bigfoot Problem and Progressivity 
4.2.4.2. Creativity Analysis of the Resolution Process: Big Foot 
4.2.4.2.1. Fluency 
4.2.4.2.2. Flexibility 
4.2.4.2.3.Attribution 
4.2.4.2.4. Quality and Originality 
4.3. Individual Creativity of Gifted Students 
4.3.1. Students’ Individual Mathematical Creativity in the Process 
4.3.1.1. Ideas for the Allowance Problem 
4.3.1.2. Students’ Fluent Thinking Skills 
4.3.1.3. Students’ Flexible Thinking Skills 
4.3.1.4. Students’ Associative Skills 
4.3.1.5. Quality of Student Products 
4.3.1.6. Originality of Student Products 
4.3.2. Students’ Individual Creativity 
4.4. Characteristics of Modeling Activities that Enable the Emergence of Mathematical Creativity 
4.4.1. Comparison of Creativity of Two Focus Groups of Students 
4.4.2. Characteristics of Modeling Activities 
4.4.2.1. Library Problem 
4.4.2.2. The Boss’s Problem 
4.4.2.3. Parking Problem 
4.4.2.4. Quilt Problem 
4.4.2.5. Bigfoot Problem 

CHAPTER 5
CONCLUSION AND RECOMMENDATIONS 
5.1. Results on Group and Individual Creativity 
5.2. Results on the Characteristics of Mathematical Modeling Activities 
5.3. Recommendations 
5.3.1. Recommendations for Practitioners 
5.3.2. Recommendations for Researchers 

 

Kapat