In its architectural meaning, the term Order refers to the system of columniation practised by the Greeks and Romans, and is employed to denote the columns and entablature together; in other words, both the upright supporting pillars and the horizontal beams and roof, or trabeation, supported by them. These two divisions, combined, constitute an Order; and so far all Orders are alike, and might accordingly be reduced to a single one, although, for greater convenience, they are divided into three leading classes or families, distinguished as Doric, Ionic, and Corinthian.
Taksit Sayısı | Taksit tutarı | Genel Toplam |
---|---|---|
Tek Çekim | 89,60 | 89,60 |
3 | 32,64 | 97,91 |
6 | 17,23 | 103,39 |
9 | 12,10 | 108,87 |
12 | 9,53 | 114,34 |
Taksit Sayısı | Taksit tutarı | Genel Toplam |
---|---|---|
Tek Çekim | 89,60 | 89,60 |
3 | 32,64 | 97,91 |
6 | 17,23 | 103,39 |
9 | 12,10 | 108,87 |
12 | 9,53 | 114,34 |
Taksit Sayısı | Taksit tutarı | Genel Toplam |
---|---|---|
Tek Çekim | 89,60 | 89,60 |
3 | 32,64 | 97,91 |
6 | 17,23 | 103,39 |
9 | 12,10 | 108,87 |
12 | 9,53 | 114,34 |
Taksit Sayısı | Taksit tutarı | Genel Toplam |
---|---|---|
Tek Çekim | 89,60 | 89,60 |
3 | 32,64 | 97,91 |
6 | 17,23 | 103,39 |
9 | 12,10 | 108,87 |
12 | 9,53 | 114,34 |
Taksit Sayısı | Taksit tutarı | Genel Toplam |
---|---|---|
Tek Çekim | 89,60 | 89,60 |
3 | 32,64 | 97,91 |
6 | 17,23 | 103,39 |
9 | 12,10 | 108,87 |
12 | 9,53 | 114,34 |
Taksit Sayısı | Taksit tutarı | Genel Toplam |
---|---|---|
Tek Çekim | 89,60 | 89,60 |
3 | 32,64 | 97,91 |
6 | 17,23 | 103,39 |
9 | 12,10 | 108,87 |
12 | 9,53 | 114,34 |
Taksit Sayısı | Taksit tutarı | Genel Toplam |
---|---|---|
Tek Çekim | 89,60 | 89,60 |
3 | - | - |
6 | - | - |
9 | - | - |
12 | - | - |
In its architectural meaning, the term Order refers to the system of columniation practised by the Greeks and Romans, and is employed to denote the columns and entablature together; in other words, both the upright supporting pillars and the horizontal beams and roof, or trabeation, supported by them. These two divisions, combined, constitute an Order; and so far all Orders are alike, and might accordingly be reduced to a single one, although, for greater convenience, they are divided into three leading classes or families, distinguished as Doric, Ionic, and Corinthian.